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Applications of hyphenated chromatographic techniques, especially GC–MS technique, have been
reported in chemical, biological, environmental, agricultural and medical analysis. The complexity of
the samples in these fields is still an obstacle for the technique to be practical and the overlapping of
the multicomponent signals induces chemometric methods widely employed. In this work, taking the
esticides
verlapping signal resolution
arget factor analysis (TFA)
mmune algorithm (IA)

rapid analysis of pesticide mixture as an example, a chemometric approach was proposed for resolution
of multicomponent overlapping GC–MS signal. In the method, a mass spectral library of pesticides was
organized at first, then target factor analysis (TFA) was employed for testing the existence of a specific pes-
ticide in the multicomponent overlapping GC–MS signal, and finally the chromatographic information of
the pesticide was extracted by a non-negative immune algorithm (IA). A GC–MS signal of a 40-component
pesticide mixture eluted within 9 min was analyzed by the method. It was found that the mass spectra

files
and chromatographic pro

. Introduction

Hyphenated chromatographic techniques, such as gas
hromatography–mass spectrometry (GC–MS), high-performance
iquid chromatography with diode array detector (HPLC-DAD)
nd liquid chromatography–mass spectrometry (LC–MS), etc.
ave been proved to be powerful methods for both qualitative

dentification and quantitative analysis. These techniques are,
herefore, widely employed for analysis of complex components in
arious fields, e.g. in the analysis of biological, metabolomic [1,2],
nvironmental [3,4], agricultural [5] and medical [6] samples.
owever, the complexity of the analytical signals, especially the
verlapping of the responses by different components, and the
uge amount of data produced by hyphenated instruments are still
bstacles to qualitative identification and quantitative analysis. In
ost cases, the signals of compounds of interest are overlapped
ith the signals of the complex matrix or coexistent components,
aking the detection very hard and even impossible. Moreover,

verlapping is also a problem to affect the efficiency of the tech-
iques. Although lots of experimental efforts have been made to
mprove the throughput of these hyphenated chromatographic
echniques [7–9], it is still an important task to develop effective

ethods for high-throughput analysis of complex systems.

∗ Corresponding author. Tel.: +86 22 23503430; fax: +86 22 23502458.
E-mail address: xshao@nankai.edu.cn (X. Shao).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.07.001
of almost all the pesticides can be obtained.
© 2010 Elsevier B.V. All rights reserved.

Chemometrics has provided an alternative way for improv-
ing the efficiency of hyphenated chromatographic techniques.
Chemometric methods can be of great help for extracting hid-
den information from the multicomponent overlapping signals.
Factor analysis (FA) techniques have been widely used for anal-
ysis of overlapping signals in complex systems [10] like traditional
Chinese herbal medicine [11] and metabolomic samples [12]. As
well-known FA-based methods, evolving factor analysis (EFA) [13],
window factor analysis (WFA) [14], and heuristic evolving latent
projections (HELP) [15,16] have been widely employed to study the
evolving processes such as chemical reactions or elution in chro-
matography. Rank annihilation factor analysis (RAFA) [17] provided
an efficient tool for quantitative analysis of gray systems, and tar-
get factor analysis (TFA) [18,19] and iterative target transformation
factor analysis (ITTFA) [20] can be used for qualitative and quan-
titative aims simultaneously. Methods based on least squares like
multivariate curve resolution—alternating least squares (MCR-ALS)
[21,22] and immune algorithm (IA) [23] have also been success-
fully employed for resolution of multicomponent complex systems
[24–27]. Although both MCR-ALS and IA are based on curve-fitting
strategy, the two techniques work differently. IA directly extracts
the contribution of each component to the total signal, instead of
trying to fit the total signal under the constraint of least squared

error. Furthermore, IA extracts the information of each component
independently and simultaneously, and thus can avoid the influ-
ence of noise and background. On the other hand, concentration
obtained by IA method is an absolute value, instead of a relative
one. In addition, as a convolution and deconvolution technique,
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avelet transform (WT) can also be helpful for resolution of over-
apping chromatographic signals [28–30]. With these chemometric

ethods, time-consuming sample pre-treatment for concentration
nd purification can be saved, and the optimization of experimental
onditions can be simplified.

In our previous works, IA was engaged for resolution of the
verlapping signals [23,31]. The basic IA has a strong ability for
esolution of the overlapping analytical signals, but the spectra of
ll components must be provided. Due to the complexity of real
ystems, it is difficult to obtain the mass spectrum of each compo-
ent. Thus, independent component analysis (ICA) was employed

or extraction of mass spectra from GC–MS signal [32]. With the
elp of ICA, it is no longer necessary to provide the spectra of
ure components. Yet, when the spectra of the components are
lso overlapping, the negative values will appear in the extracted
pectra and the resolved chromatograms are also distorted [33,34].
n the other hand, when the number of the provided spectra

s less than the real number of the components, the resolved
hromatographic profiles are not correct. Therefore, efforts on
he improvement of ICA were made [35–38] and a non-negative
mmune algorithm (non-negative IA) was developed for the prob-
ems [39]. In non-negative IA, a negative correction was proposed.
hese efforts have been proved to be applicable to extract spectral
nd chromatographic information from overlapping signals [40].
evertheless, in most of real applications, it is generally expected

o obtain only the information of some specific components, instead
f all the components. Thus, it is still a great challenge to develop a
ethod for extracting the information of specific components from
multicomponent overlapping signal.

In this paper, for the aim of extracting only the informa-
ion of compounds of interest, an approach based on IA and TFA
18,19] was proposed for resolution of multicomponent over-
apping GC–MS signal. At first, a mass spectral library of the
ompounds of interest was organized for providing mass spectra
f the possible components. Then, in stead of extracting the pure
pectra of the components from the measured signal by WICA as in
ef. [39], TFA was employed for testing the existence of a specific
omponent in the measured GC–MS signal. Once the component is
etected, the chromatographic information of the component was
xtracted by non-negative IA. A GC–MS signal of a 40-component
esticide mixture eluted within 9 min was investigated by the
roposed approach with a mass spectral library of 300 possible
esticides. The results show that both the mass spectra and chro-
atographic profiles of the pesticides can be obtained. The method
ay be promising for detection of a specific component in a com-

lex sample.

. Algorithm and calculations

A measured GC–MS signal can be represented as an m × n two-
ay data matrix, where m and n are the number of retention time

nd m/z channels. Therefore, each column is a chromatogram for
n m/z channel, whereas each row is a mass spectrum at a reten-
ion time. For a multicomponent sample, the measured signal is a
inear combination of the signals of the components. For the sig-
als of overlapping, the mass spectrum at a retention time can be
escribed as:

=
d∑

i=1

Vi =
d∑

i=1

ciV0i (1)
here Vi, V0i, and ci are the mass spectral response, standard spec-
rum and concentration of the ith component at a retention time,
espectively. d is the number of components in the signal. When V
nd all V0i are given, the calculation of basic IA can be summarized
 (2011) 1247–1253

as the following iteration:

dc(k) = 〈(V − V (k−1)
F ), T〉 (2)

c(k) = c(k−1) + dc(k) (3)

V (k)
F =

d∑

i=1

c(k)
i

V0i (4)

where k is the number of iterations, T is the normalized standard
spectra, VF represents the resolved information, and V − VF means
the residue. The operator 〈,〉 expresses the inner product or projec-
tion. Therefore, dc is the relative concentrations of the components
in the current residue, and c is the concentrations in the signal
V. The iteration will stop until dc approaches zero, which means
that the information of the components has been completely sub-
tracted. Clearly, after the iterations, VF will be the information of the
components in the signal V and c will be the concentrations of the
components at a retention time. In the algorithm, each retention
time row is calculated independently. Thus, connecting the con-
centrations of every component obtained at all retention time will
form the chromatographic profiles of the components.

From the theory of IA, it is clear that the standard spectra, V0i,
of all the components must be correctly provided and subtracted
simultaneously. Therefore, ICA was adopted to extract the spec-
tral information from the measured GC–MS data matrix [35–38]
and a non-negative IA was developed to subtract the information
of a specific component [39]. However, there are still limitations
for these techniques in real applications. In this work, therefore, in
order to improve the efficiency of resolution, a mass spectral library
was used for providing the possible components in the measured
signal, instead of extracting the information by ICA, and TFA was
employed for testing the existence of the component. If TFA gives
a positive result, non-negative IA was adopted for the resolution.
Therefore, the calculations of the method can be summarized as
three steps:

(1) A mass spectral library of the possible components was orga-
nized. In this study, because the analysis of pesticides was
taken as an example, a library containing 300 pesticide com-
pounds was established using the NIST05 MS database and NIST
mass search 2.0 program. Normalized spectra were used in the
library.

(2) TFA was performed by taking the mass spectrum of a com-
pound in the library as a test vector to test the existence of
the compound in the measured GC–MS signal. In the calcula-
tion, the rank was estimated by the cumulative variance. 99%
was used as the criterion for ensuring the rank not less than the
real component number, because almost no effect can be found
when the rank is slightly larger than the number of components.
However, if the rank was less than the number, some compo-
nents in lower response cannot be identified by TFA. Moreover,
normalization was performed to keep the consistency and com-
parability of the projected mass spectrum with the ones in the
library. Furthermore, instead of the criteria defined in litera-
tures, the correlation coefficient between the projected mass
spectrum and the test vector was adopted for the judgement
of the existence. When the correlation coefficient exceeds 0.8,
TFA gives a positive answer.

(3) Once a target component is approved, the projected mass

spectrum of the component is employed for computing the
chromatographic profile of the component by using non-
negative IA. Otherwise, step (2) will be repeated for the next
compound in the library and the iteration will not stop until all
the compounds are tested.
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ig. 1. Total ion chromatogram (TIC) of the mixed pesticides sample denoted as soli
y the vertical dot lines.

. Experimental

All chemicals are of analytical reagent grade. The mixed solu-
ion containing 40 pesticides (10 ppm) in acetone was provided by
hina import and export commodity inspection technology insti-
ute, and stored at 4 ◦C in darkness. Thermo GC–MS system (USA,
hermo Fisher Scientific) consisting of a Trace gas chromatograph
ith weak polar capillary column, CP-Sil8CB (USA, VARIAN, 30 m

ong, 0.32 mm i.d., and 0.25 �m film thickness) and a Polaris Q mass
pectrometry with an electron impact ionization source (EI) was
mployed.
In the experiment, the electron impact ionization was tuned
t 70 eV and helium (BOC, 99.999%) was used as carrier gas with
n average linear velocity of 1.0 mL min−1. The pesticides solu-
ion was analyzed with the following oven temperature program:

ig. 2. Mass spectra of carbofuran obtained from mass spectral library (a) and TFA (b), an
he measured TIC, and dot line denotes the resolved chromatographic profile of carbofura
and the resolved results as dot lines. Division of the whole chromatogram is shown

set the initial temperature at 50 ◦C with 1 min, then, increased to
300 ◦C at a rate of 100 ◦C min−1, hold 6 min, and the temperature of
the GC injector was 280 ◦C. The mass spectrometer was operated
with a transfer line temperature of 280 ◦C, ion source 200 ◦C, mass
range from 50 to 650 amu and scan event time 0.58 s. All pesticides
were eluted within 9 min under this condition. The total ion chro-
matogram (TIC) of mixture is shown in Fig. 1 as the solid line. It
can be observed that there are just several group of peaks in which
the chromatographic profiles of 40 pesticides and impurities are
embedded.

It should be noted that, for simplicity, the whole chromatogram

was divided into several regions along the retention time as shown
in Fig. 1 by the vertical dot lines. For each testing compound, TFA
was run separately over different regions. For most cases, the test
vector can be matched correctly with the correlation coefficient

d the resolved result obtained by non-negative IA (c), in which solid line represents
n.
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Table 1
Identification results of the components in the measured GC–MS signal.

Retention time
(min)

Compound Correlation
coefficient

Match ratio
(‰)

3.53 Methamidophos 0.84 805
3.97 Acephate 0.82 877
4.08 Trichlorfon 0.81 751
4.30 BPMC 0.91 855
4.31 Propoxur 0.86 781
4.32 Omethoate 0.88 818
4.38 Trifluralin 0.89 898
4.49 Phorate 0.87 853
4.56 Carbofuran 0.96 869
4.57 Atrazine 0.88 845
4.58 Dimethoate 0.89 815
4.60 Hexachlorobenzen 0.97 922

–a Simazine – –
4.75 Pirimicard 0.91 859
4.87 Prometryn 0.81 848
4.88 Parathion-methyl 0.90 841
5.04 Chlorpyrifos 0.81 854
5.05 Triadimefon 0.80 813
5.11 Aldrin 0.81 890
5.23 Quinalphos 0.85 868
5.26 Procymidone 0.83 919
5.32 Methidathion 0.89 822
5.34 Fenamiphos 0.81 841
5.67 4,4’-DDD 0.99 892
5.73 �-Endosulfan 0.90 883
5.88 4,4′-DDT 0.99 891
5.96 Dicofol 0.89 848
6.07 Captafol 0.87 793
6.14 Fenpropathrin 0.89 859
6.41 Tetradifon 0.95 883
6.45 Phosalone 0.89 921
6.46 Amitraz 0.94 920
6.87a Permethrin-2 0.97 849
6.92a Permethrin-1 0.98 906
7.41a Cypermethrin-1 0.83 844
7.46a Cypermethrin-2 0.91 836
7.54a Cypermethrin-3 0.91 832

–a Cypermethrin-4 – –
8.20a Fenvalerate-1 0.81 876
8.37a Fenvalerate-2 0.88 858

a The components identified manually. The two components without retention
250 L. Miao et al. / Talan

riterion, but one region may match two or three test vectors of iso-
eric compounds with similar mass spectra. In the later situation,

he result must be approved manually with the elution sequence
f components along retention time. Therefore, a well separated
hromatogram of the sample was also measured under the opti-
ized temperature program. In the experimental condition, the 40

esticides are separated within 35 min.

. Results and discussion

.1. Identification of the components in the measured GC–MS
ignal

As described in the calculation steps above, the first task is to
dentify the existence of a candidate compound in the measured
C–MS signal, i.e., performing TFA with the mass spectra of the
ompound in the library as a test vector over each retention time
egion. Taking carbofuran as an example, it was found the com-
onent is located in the region of 4.52–4.64 min. Fig. 2(a) and (b)
hows the test vector (from mass spectral library) and projected (or
ccepted) vector, respectively. Although apparent difference can be
een between the two spectra, the correlation coefficient between
he two vectors is found to be 0.96, and the match ratio of the
rojected vector given by the NIST mass search program with the
IST05 MS database is 869, which evaluates the similarity (in thou-

andths) between the mass spectrum obtained and the one from the
IST mass library by the automated mass spectral deconvolution
nd identification system (AMDIS).

After the 300 candidate compounds were tested by TFA, 31 can-
idates were identified in the overlapping GC–MS signal of the
esticide mixture, except for the three groups of isomeric com-
ounds permethrin, cypermethrin and fenvalerate, having 2, 4, and
isomers, respectively. It is apparent that the reason for TFA not

ble to identify the mass spectra of the isomers is the similar-
ty between them. Therefore, the elution order in the separated
hromatogram was used for identification of these isomeric com-
onents. However, because the mass spectra of cypermethrin-3
nd cypermethrin-4 are too similar and the retention times of the
wo isomers are too close, only one isomer was identified. Besides,
imazine was not detected due to the too fast speed of the tempera-
ure program. The identified results and their match ratios with the
pectra in the NIST05 MS database are listed in Table 1. The com-
onents identified manually are marked with an asterisk. It can be
ound that all the match ratios are above 750, indicating the identi-
cation is reliable. Furthermore, compared the match ratio with the
esults in Ref. [39], it can be found that the mass spectra obtained
y TFA are even better than that obtained by ICA.

.2. Resolution of the chromatographic profiles

Once a candidate compound is identified, the chromatographic
rofile of the component can be calculated by using non-negative

A. Fig. 2(c) shows the result obtained for carbofuran, in which the
olid line represents the measured TIC and the dot line illustrates
he extracted information by non-negative IA with the projected

ass spectrum of the compound. Due to the sparseness of the data
oints caused by the fast elution, the chromatogram looks not so
ontinuous but it is reasonable. Therefore, the information of a spe-
ific component can be extracted by the method, rather than all the
omponents in the overlapping signal.
For further investigation of the results, Fig. 3 shows the mass
pectra and the chromatographic profiles of all the components in
he overlapping signal. In the figure, the four chromatographic pro-
les were plotted as dot lines and the residual was plotted as dash

ine. It can be seen that all the chromatographic profiles are rea-
time were not identified.

sonable and the residue fits the baseline well except for the small
peak at 4.5625 min. Similarly, Fig. 4 shows the projected mass spec-
trum and chromatographic profiles for the retention time region
5.00–5.15 min. It is clear that besides the information of three iden-
tified components, there is still information of a component in the
residue. This clearly means that the mass spectrum of the compo-
nent does not match any one in the library. In fact, the component
is an impurity identified as p-dichlorobenzophenone according to
the residual signal, which may be generated from the deteriora-
tion of the mixed solution. Therefore, only the specific components
are extracted by the method, rather than all the components con-
tained in the measured signal. Thus, different from the previous
work in Ref. [39], in which the information of all components was
extracted, the method can be used for analyzing only the com-
ponents of interest in a mixture regardless of the impurities or
unconcerned components. It may be more practical for identifying
a specific component in a complex mixture.

All the resolved chromatographic profiles are shown in Fig. 1 as
the lines in different color. From the figure, it can be seen that except
for cypermethrin-4 and simazine, the other 38 pesticides in the
mixture were successfully identified and resolved. It is worthy of

note that the peaks in the three groups of isomers were not resolved
due to the similarity of their spectra.
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ig. 3. Identified mass spectra and the resolved chromatographic profiles obtaine
easured TIC, dot lines express the resolved chromatographic profiles and dash lin

.3. Evaluation of the proposed method

To further evaluate the efficiency of the proposed method, the

IC profiles between 4.52 and 4.64 min is taken as an example.
he mass spectra of carbofuran, atrazine, dimethoate, and hex-
chlorobenzen obtained from the library, as shown in the top of
ig. 5, are directly used, instead of the projected mass spectra by

ig. 4. Identified mass spectra and the resolved chromatographic profiles obtained by
easured TIC, dot lines express the resolved chromatographic profiles and dash line deno
the proposed approach for the region of 4.52–4.64 min. Solid line represents the
tes the residual.

TFA, for extraction of the chromatographic profiles in the calcu-
lation of non-negative IA. The resolved results are shown in the
bottom of Fig. 5. Comparing the chromatograms in Figs. 3 and 5, it

can be seen that the residue in Fig. 3 fits the baseline better than that
in Fig. 5, although there is also an obvious small peak at 4.5625 min
in Fig. 3. Quantitatively, the proportion of the residue to the TIC is
3.53% in Fig. 3 but 9.21% in Fig. 5. To further analyze the small peak

the proposed approach for the region of 5.00–5.15 min. Solid line represents the
tes the residual.
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Fig. 5. Mass spectra from mass spectral library and the chromatogra

n the residue in Figs. 3 and 5, the mass spectrum was identified as
trazine, which is one of the four components. However, inconsis-
ence between the mass spectrum and the library one can be found.
t indicates that the mass spectral information was not completely
xtracted because of the inconsistence. Therefore, it can be con-
luded that the resolved chromatographic information in Fig. 3 is
ore reasonable, and the projected mass spectra by TFA are more

imilar to the spectra of the components in the measured GC–MS
ignal. Therefore, the extracted mass spectra from the measured
ignal may be more suitable for identification of the components
han the spectra in databases because experimental condition may
nduce a slight change of the mass spectra.

. Conclusion

Rapid analysis of pesticides by GC–MS was performed with the
id of TFA and non-negative IA. TFA was proved to be an efficient
ool to test the existence of a specific component in an overlapping
C–MS signal. With a mass spectral library, rapid identification of
esticides in a mixture was achieved by a GC–MS measurement
ith very fast temperature program. In addition, non-negative IA is
emonstrated to be workable for extracting the chromatographic

nformation of specific component separately rather than all the
omponents simultaneously. With the proposed approach, 38 pes-
icides are identified in the measured overlapping GC–MS signal
f a 40 components eluted within 9 min, and the corresponding
hromatographic profiles are extracted. Furthermore, the extracted
ass spectra from measured signal are considered to be more suit-

ble for identification of the components than that in databases
ecause the former ones can reflect a slight change produced in
xperiment. Therefore, the combination of TFA and non-negative IA
ay be a practical alternative for identification of the components

nd resolution of the chromatographic profiles from multicompo-
ent overlapping GC–MS signals.
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